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ABSTRACT

Collocation schemes are presented for solving linear fourth order differential equations

in one and two dimensions. The variational formulation of the model fourth order problem

is discretized by approximating the integrals by a Gaussian quadrature rule generalized to

include the values of the derivative 'of the integrand at the boundary points. Collocation

schemes are derived which are equivalent to this discrete variational problem. An efficient

preconditioner based on a low-order finite difference approximation to the same differential

operator is presented. The corresponding multi-domain problem is also considered and

interface conditions are derived. Pseudospectral approximations which are C 1 continuous at

the interfaces are used in each subdomain to approximate the solution. The approximations

are also shown to be C 3 continuous at the interfaces asymptotically. A complete analysis

of the collocation scheme for the multi-domain problem is provided. The extension of the

method to the biharmonic equation in two dimensions is discussed and results are presented
for a problem defined in a non-rectangular domain.
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1 Introduction

Spectral methods are characterized by the representation of the solution to a differential

equation in terms of a truncated series of smooth global functions which are known as trial or

basis functions. The basis functions are usually chosen to be the eigenfunctions of a singular

Sturm-Liouville problem (Gottlieb and Orszag, 1977). It is this choice which is responsible
for the superior approximation properties of spectral methods over other standard methods

of discretization. For linear problems possessing smooth solutions these eigenfunctions yield

expansions that converge asymptotically faster'than any finite power of N -1.

Two areas of research in spectral methods which are receiving much attention at the

current time are the construction and analysis of well-posed approximations to the Stokes

and Navier-Stokes equations and the development of methods which can be applied easily

to problems defined in complex domains. With respect to the first, it is well-known that

in the primitive variable formulation the velocity and pressure approximation spaces need

to be compatible to avoid problems of ill-conditioning. This is similar to the Babu_ka-

Brezzi condition required for the corresponding finite element approximation spaces. In two

dimensions it is possible to avoid this difficulty by reformulating the governing equations in

terms of a stream function. The governing equation is then fourth-order, and nonlinear in

the case of the Navier-Stokes equations. In this paper we seek to construct pseudospectral

approximations to fourth-order differential equations with the ultimate goal of applying them

to solve the nonlinear stream function formulation of the Navier-Stokes equations.

Secondly, the development of techniques for handling complex geometries is essential

if spectral methods are to be applied to problems defined in more than just the simplest

domains. The basic idea behind domain decomposition is to break up the domain into smaller

simpler subdomains in which spectral approximations can be used. The approximations are

suitably linked by appropriate interface continuity conditions. The way in which this is

implemented is important if the full power of the spectral method, in terms of the accuracy
of the approximation, is to be achieved.

In this paper we shall restrict ourselves to the model fourth-order problem in one and

two dimensions. Starting from a variational formulation of the problem we shall derive a

corresponding collocation problem complete with interface conditions. In a domain decom-

position setting this approximation will be chosen to be C 1 continuous implicitly. In addition

C 3 continuity across the subdomain boundaries is achieved asymptotically as the order of
the approximation is increased.

Although there are many applications of spectral methods to solve second-order elliptic
partial differential equations in the literature there is little previous work on fourth-order

problems even though the regularity of the solution to these problems is generally higher than
for second-order problems. Some interesting ideas are proposed in the works of Morchoisne

(1984) and Orszag (1971). Bernardi and Maday (1988) give a survey of strategies that may
be employed for fourth-order problems.

Maday and M6tivet (1986) have studied Chebyshev spectral and pseudospectral approx-

imations of the stream function formulation of the Navier-Stokes equations, They prove the

convergence of the schemes and derive error estimates in weighted Sobolev spaces. Kara-

georghis and Phillips (1989a, 1989b) use a spectral collocation strategy to solve for the laminar



flow through a channelcontraction againusing a streamfunction formulation for moderate
valuesof the Reynolds number. They use a domain decompositionmethod to subdivide
the flow region into rectangular subdomainsanc1patching to piecethe solutionstogether, in
somesense,acrossthe subdomain interfaces.

In a collocation methodthe choiceof the collocationpoints is crucial. In spectral methods
they are always chosento be the nodesof a Gaussianquadrature rule principally for two
reasons.First, the Lagrangeinterpolating polynomial which interpolatesdata at thesenodes
hasgood approximation properties. Secondly,the collocation method may be shownto be
equivalent to a variational formulation of the problem whenthe sameGaussianquadrature
rule is used to approximate the integrals appearing in this formulation. For second-order
problems the Gauss-Lobattonodesare usedbecausethe boundary conditions can then be
imposedefficiently. This leadsto an optimal error in the resulting spectral approximation
(Canuto et al. (1987)). For fourth-order problemstwo boundary conditions are imposedon
the solution. Theseare usually of Dirichlet and Neumann type. The imposition of these
boundary conditions is facilitated by the constructionof a generalizedLagrangeinterpolating
polynomial which interpolates the function at the interior nodesand the function and its
derivativeat the boundary nodes.The generalizedGaussianquadrature rule associatedwith
this interpolating polynomial can then be derived. Quadrature rules of this form are quite
well-known in the theory of numerical integration (see,for example, Golub and Kautsky
(1983), and the referencestherein). Golub and Kautsky (1983) describehow the weights
in these quadrature rules may be determined computationally. In this paper closed form

expressions for the weights are derived using the properties of orthogonal polynomials.

We show that, for fourth-order problems, the natural choice of nodes are the zeros of cer-

tain Gegenbauer (or ultraspherical) polynomials. Explicit representations for the quadrature

weights are derived for evaluating integrals of the form

f'_ w (x)f(x)dx,
1

where the weight function takes the form

w,x(x) = (1 - z2) _ , A > -1.

The particular form of these weights is given when A = 0 (the Legendre weight function) and

)_ = -1/2 (the Chebyshev weight function). The interior nodes in the case when )t = -1/2

are the zeros of T_(x) whereas the interior Gauss-Chebyshev-Lobatto nodes are the zeros of

A collocation scheme for solving a fourth-order model problem is derived by considering

a variational formulation of the boundary value problem with suitably defined inner prod-

ucts. The two formulations are shown to be equivalent if the inner product in the discrete

variational problem is defined by the generalized Gauss quadrature rule. The linear system

of equations which derives from this collocation scheme is ill-conditioned. The condition
number of the coefficient matrix scales like O(N s) where N is the order of the approxi-

mation. An efficient preconditioner for this system based on a low order finite difference

approximation to the same differential operator is presented. The combination of general-

ized Gaussian quadrature rules with spectral methods has also been proposed by Bernardi

et al. (1990). This idea is extended to multi-domain problems in the present paper. Pseu-

dospectral approximations which are C 1 continuous at the subdomain interfaces are used to
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approximate the solution in eachsubdomain. The discrete variational problem enablesus
to derive interface continuity conditions which, in the asymptotic limit, result in C 3 con-

tinuous approximations. The variational formulation is used to provide an analysis of the

collocation scheme for domain decomposition. The analysis shows that the pseudospectral

approximation is optimal in the sense that it is of the same order as the corresponding error

in the best approximation. Numerical results are presented in which the usual exponential

convergence behaviour of spectral approximations is exhibited. Finally, the extension of

the method to two dimensions is described and numerical results presented for a number of

model problems. An application of the method to the solution of the biharmonic equation

in a non-rectangular domain, an L-shaped region, for which standard spectral methods are
not applicable is presented.

2 Variational Formulation of the Model Problem

In this section we consider the variational formulation of the fourth-order model problem.
Consider the fourth-order boundary-value problem

d4u

dx 4 =f(x), -l_x<l,

(1)

u(+_) = o, _(+1) = o,

where f(x) is a given source function. It is well-known that, for any f C H-2(-1,1), (1)

has a unique solution u _ H02(-1, 1) ( see Grisvard (1985), for example ). A collocation

scheme for solving (1) is derived by considering a variational formulation of the problem
with suitably defined inner products.

To set up the variational formulation we need to define function spaces for each _ > -1.

Let L_(-1, 1) be the Hilbert space defined by

v : (-1,1) _ R is measurable ; /L_(-1,1)= f'_,w_(x)v_.(x)dx<
J

endowed with the inner product

./_1w_(x)=(_)v(_)d_.(=,o)_= ,

We also introduce the Sobolev space H_(-1, 1) defined by

dkv

H_(-1,1)= {v: _x_ c Ll(-1,1 ), 0<k<2}

with corresponding norm

(2)

2 [1 d% 2 1/2
IIv 112,_={ _ s_ w_(x)(a-_) dx }

k=O 1



Let n_,o(-1, 1) be the subspace of H_(-1, 1) defined by

H_,o(-1,1)={vEH_(-1,1): v(+l)=0;

Consider now the bilinear form a_(.,.) defined on

H_(-1,1) × H_,o(-1,1)

v'(+l) = 0 }.

by

a_(u, v) = /_ll u,,(x)[w_(x)v(x)l.dx. (3)

For any f E H-2(-1, 1) the fourth-order model problem (1) is equivalent to the variational

problem : Find u E H_,0(-1, 1) such that

2 ,1). (4)a_(u,v)=(f,v):_, VvE Hx,0(-1

Bernardi and Maday(1991) have proved the following result:

Proposition 2.1 Let A satisfy -1 < A < 1. The biIinear form a;_ is elliptic on H_,o(-1, 1)

2 1), i.and continuous on H_(-1, 1) x Ha,o(-1, e.

2 <IIu I1_,_-a_(u,u) Vu e H_,0(-1,1), (5)

2
la_(u,v) l<__llull2,_llvll_,_, rue H_(-1,1), vc H_,0(-1,1), (6)

respectively, where a and _ are positive constants.

This is a generalization of an earlier result of Maday (1990) for A = -1/2. An immediate

consequence of Proposition 3.1 is the following theorem:

Theorem 2.1 Let A satisfy -1 < A < 1. For any f E H_-2(-1, 1) the variational problem

(4) has a unique solution u E H_,0(-1, 1). Moreover, it satisfies

IIu I1_,_---c IIf II.;=(-,,1)• (7)

3 Pseudospectral Approximation

We consider the pseudospectral discretization of the fourth-order problem (1). Let Pro(-1, 1)

denote the space of algebraic polynomials of degree N or less on the interval [-1, 1]. Let xj,

1 < j < N - 1 be N - 1 distinct points in the interval [-1, 1] With xl = -1 and x_/-1 = 1.

Throughout this paper we take N > 4 in order to have at least one point in the interior of

the interval [-1, 11. Suppose that the values fj of some function f(x) are given at the points

x.i, 1 < j < N - 1, together with the values f_ and f__l, of f'(x) at x = xl, and x = XN-_,

respectively. To set up the pseudospectral approximation of (1) which automatically satisfies

the boundary conditions it is necessary to construct the Lagrange polynomials for this data.

Define the polynomials v(z) and H(z) by

N-2

v(x) = (1 - x2) 2, H(x) = H (x - zj) (8)
j=2



It can be verified that the Lagrange polynomial of degree N which interpolates this data is
given by

where

and

N-I

.N(x) = _ f;h.(x) + f[_.(_) + f_,_. N_,(_),,
j=l

I . n(x),,¢_:)
[1- (_- _._l ___

_ _(x) sA_)
,

2<j<N-2,

, j= 1,N- 1,

j = 1,N - 1,

(9)

(1o)

(11)

(x- xj) 2 ' S i(x)- (x--xj) ' j=I,N-1. (12)

The corresponding integration rule based on these points

(_l N- 1
1 w_(x)f(x)dx = _ wjf(xj) + W,f'(x,) + WN_lft(zN_I) (13)

j=l

can be shown to be exact for all f E P2N-3(--1, 1) if the interior nodes xj, 2 <_ j <_ N - 2

are chosen to be the zeros of the Gegenbauer or ultraspherica] polynomial _(_+2)"-'N-3 of degree
N - 3. The location of the nodes are determined by Newton's method and polynomial

deflation. For the sake of generality we consider the general case A > -1 here although

when we investigate the solution of differential equations we will only consider the case A = 0.

Important properties of the ultraspherical polynomials G(U)(x) are given in the Appendix

(hereinafter the reference (A.m) will be used to denote equation (m) from the Appendix

(rn = 1,2,...)). The weights depend on A and this will be assumed in the following.

The polynomials hi(x), 1 < j < N- 1 and h--j(x), j = 1,N.- 1 defined by (10) and
(11), respectively, form a basis for PN(--1, 1). Therefore, choosing f(x) to be each of these

polynomials in turn we obtain explicit expressions for the N + 1 weights:

wj = w_(x)hj(x)dx 1 < j < N 1,, ' - - - (14)

_j = w_(x)-_(z)dx j-- a,N- 1. (15)1

Although only the boundary weights are of" relevance to the present paper in that they

are required for the statement of the multi-domain collocation problem we give details here

of the representations for the interior weights as well. These are necessary if one was to solve

the discrete variational problem without restating it as a collocation one. The advantage of
doing this is that it results in a symmetric system of linear equations to be solved for the
unknown nodal values of the solution.

We are able to derive an original result in which explicit representations for the weights

(9,10) are obtained using the properties of the ultraspherical polynomials (see the Appendix).
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Let us begin with the weights wj, 2 < j _< N - 2, associated with the interior points. The

polynomials H(x) and _N-3 t x) are related by

HCx) =  N-3 v-J
" A--_-a '

(16)

since they are of the same degree and have the same zeros, where AN-S is the leading

_,(_+2), , Thus using (10) and (14) we may writecoefficient of t_N_S kx).

(_+2)

1 f;l w_(x)v(x)GN-a (X)dx, 2 < j < N - 2. (17)
= (z - xj) - -

N-3 (Zj)V(Xj)

In order to determine the value of this integral, we make use of the Christoffel-Darboux

identity:

._(_+2), _,.(_+2). _ _(_+2)/x_G (_+2)/'_ AN-3
N-a G(k;'+2)(x)G(;'+2)(y) tiN_ , [X)IJN_ 3 1,yJ- _JN-3 _ ] N-2 kYI (18)

= 'TN-Z(x - Y) AN-,'
k----o 7k

_(x+z)

where 7k, (1 <_ k <_ N - 3) is defined by (A.4). Now we replace y by xj where ,-'N-a (xj) = 0

then (18) reduces to

(4+,) (_+2) .-4x+2). ,,.(_+2)__
GN_ , (zj)AN-3 GN-a (x,). = _ N_3 {gik _y, jLv k _._j]. (19)

7N-3AN-2 (X -- xj) k=o "yk

If we now multiply both sides of (19) by (1 - xa)>'+'G(oX+')(x) and integrate with respect to

x over [-1,1] then using the orthogonality property (A.3) we obtain

('+') ' (I - xa)_'+aG(o;'+a)(x)C(_+_)(x) dx = -G('+2)(x._),
aN_ a (xj)AN-3 /-I (x xj)

"fN-3AN-a

which enables us to write

AN-27N-Z 2 < j _< N - 2, (20)

w i -" AN_aV(Xj)C_+__)', x_('x+a)/x _ '

since G(oX+')(x) is a constant. Using the recurrence relation (A.6) with n = N - 3 we write

(17) in the form

2,x+hr(N + A- 1)r(N + X) 1 (21)
', _,_(X+')/x _ '

-- xjJ _JN-3

for 2 <j <_ N-2.
Representations for the boundary weights w_,wN-_, w_ and @N-1 are found using the

integrals (A.8) and (A.9). Consider @_ which, in view of (11), (12) (15) and (16), may be

written in the form

-- 1 1

w, = G(__+_)(_I)S_(_I ) f_(1 - x2)_(l - X)2( 1 -F X)C(N+-_)(X) dx" (22)
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Now SI(X) = (1 - x)2(1 + x) and therefore S_(-1) = 4. The condition (A.5) enables us to
write (22) in the form

_, (--1)N(N--3)W(A+3)f'(1 x)_+2(l+z)_+,GN_3(x)dx.= _ (A+2)
4F(N + A)

The integral in (23) may be evaluated analytically using (A.8) to give

2_+2r(A + 2)r(A + 3)(g- 3)!
W 1

r(X + 2A+ 2)

Similarly we can show that

(23)

(24)

2_+:r(A + 1)r(A + 3)(N- 3)!
W 1

and also

(_ + 3)F(N + 2A+ 2) {(A + 2)N2 + (A + 2)(2A- 1)N-(4A2 + 9A + 3)}, (25)

?2N-1 = Wl , W--N-1 _-_--Wl. (26)

In the special case A = 0 the Gegenbauer polynomials coincide with the Legendre poly-
nomials since Wo(X) = 1. The boundary weights are given by

W 1 _- WN_ 1 -._
8(2N 2 - 2N- 3)

3(N - 2)(N- 1)N(N + 1) ' (27)

8

Wl = --WN-1 -'_ (N- 2)(N- 1)N(N + l) '

and the interior weights by

(28)

32(N- 1)N 1

wj = (N- 2)(/+ 1)(/+ 2)2 (1 2 (2) 2 ' (29)
--Xj)[GN-2(Xj) ]

for 2 < j < N - 2. This form for the interior weights is derived using (A.6) and (A.10).

When A = - 1/2, the Gegenbauer polynomials are multiples of the Chebyshev polynomials

Tn(x) = cos(n cos-ix). In this case the boundary weights are given by

3_'(3N 2 - 6N + 1)
W 1 -_ WN_ 1 _.

10(N- 2)(N- 1)g ' (30)

and the interior weights by

37r

4(N- 2)(N- 1)N' (31)

7r(N- 1)(N- 2) 3 1

w_= N (1 2 ,, 2, 2<j<N-2. (32)- x_)[T___(xj)] - -

Having written down an expression for a generalized pseudospectral approximation (9)

and determined the weights in the corresponding quadrature rule we are now in a position



to write down the discrete problem correspondingto (4). The discretevariational problem
correspondingto (4)is: Find un E PN(-1,1)N H_.0(-1, 1) such that

ax(un, vn)= (f, vu):_,a, V vu E PN(-1,1) N H_,o(-1,1), (33)

where the bilinear form (., .)X,d is defined by

N-2

(f,g)x,a- __, wJ(xj)g(xj) +wl[(fg)(x')W(fg)(xN-1)]+_l[(fg)'(xl)-(fg)'(xN-1)l' (34)

j=2

__(_+2)[_._
and xj, 2 < j < N - 2, are the zeros of '-'N-3 _*J"

Theorem 3.1 The variational problem (33) is equivalent to the following collocation prob-

lem: Find UN Z PN(--1, 1) n H_,o(-1, 1) such that

, _ _ (35)
u N (xj)=f(xj) , 2<j<N-2,

(x+2)
where xj, 2 <__j < N - 2 are the zeros of GN_3 ix).

Proof. The left-hand side, a_(uN, VN) is integrated by parts twice to give the following

equivalent problem : Find UN E PN(--1, 1) t3 H_,,0(-1, l) such that

((iv) (36)UN ,vN) = (f, VN) ,d,

for all vN e PN(-1,1) NH_,o(-1,1) • 2 1) the polynomials hi(x) 2 < j <
Now a basis for the space PN(--1,1) N H:_,0(-1, are , - -

• iv
S,nceu N vN E

N-2, defined in (10). These are used as test functions in (36). ( ) P2N-4(--1 1)n

H_,o(-1 , 1) and the quadrature rule (13) is exact for all polynomials in P2N-3(--1, 1) we have

(iv) _ _ (37)(u(_"),hj)_ = WjUN (xj) , 2 < j < N - 2.

Further, from the definition (34),

(f, hj)x,d=wjf(xj) , 2<j<N-2, (38)

and therefore since wj > 0, for 2 < j < N - 2, we obtain (35) which completes the proof

of the theorem.t2
We have an analogous result to Theorem 2.1 for the discrete problem:

Theorem 3.2 Let A satisfy -1 < A < 1. For any f E C°(-1,1), the problem (35) has a

uniquesolutionUN PN(--1,1)n 1).

Bernardi and Maday (1991) establish the following error estimate:

Theorem 3.3 Let A satisfy -1 < A < 1. If the solution u of (29) belongs to H_(-1,1) for

a real number a > 1, and if the data f is such that the function (1- x2)_f belongs to a space

H;(-1, 1) for a real number p > 1/2, the following error estimate between the solutions of

(29) and (38) is satisfied

II u - aN 112,:_< C( N2-_ [[ u Ilo,:_ +N'/2-P [1 (1 - x2) [ f lip,x). (39)

8



The collocation method (38) results in a systemof equationsfor the valuesuj of UN(X)
at the points xj , 2 < j < N- 2. The pseudospectral collocation approximation is then
given by

N-2

UN(X) = _ ujhj(x) , (40)
j=2

where hi(x)is given by (10) (cf. (9)).

The generalization of the collocation method (35) for problems with inhomogeneous

boundary conditions is straightforward. The nature of the pseudospectral approximation

(9) is such that inhomogeneous boundary conditions are satisfied exactly by simply insert-

ing the specified values directly into (9). If H_,B(-1, 1) is the subspace of H_(-1, 1) which

consists of those functions that satisfy the given inhomogeneous boundary conditions then

we have the collocation problem : Find UN E PN(--I, 1) N H_,s(-1 , 1) such that

60, ,
u N (zj)=f(zj) , 2<j<N-2,

_ fffA+2) / _where xj , 2 < j < N - 2 are the zeros of L,U_ 3 (._j.

4 Preconditioning

The collocation problem (35) can be restated in the form of a linear system of algebraic
equations

Au = b (41)

where u is the vector of values of UN(x) at the collocation points xj, 2 < j < N - 2, b is the

vector of values of f(x) at these points and A is the (N- 3) x (g- 3) matrix whose entries
are defined by

t(iv)_ ,
Aj-l,k-1 = n k (xj), 2 < j, k < N - 2.

The fourth-order pseudospectral differentiation operator A has postive, real eigenvalues. The

extreme eigenvalues of A are shown in Table 1. In this table we see that the largest eigenvalue

of A scales like N s while the smallest eigenvalue is independent of N. Therefore, since the

condition number of A is O(N s) an efficient preconditioner is necessary for the accurate
inversion of (41).

Orszag (1980) proposed a preconditioner for spectral methods based on a low-order finite

difference approximation to the same differential operator. The advantages of such a pre-
conditioner are that it is sparse, easily invertible and yields an inverse close to the inverse

of the original spectral operator. Therefore we propose using a second-order finite difference

operator as our preconditioner. This requires the solution of a pentadiagonal system which
may be performed very efficiently and stably using Gaussian elimination.

For 3 < i < N - 3 the second-order finite difference approximation to u(x) at the point
xi is

u6V)(xi) _ aiu(x__2) + biu(xi_,) nc ciu(x,) + d,u(xi+,) + e,u(x,+2)
where

a_ = 24

(x,_2- - - -



bi -"

di --

-24

-24

24

e, --

c, = -(ai + b, + d, + ei).

A similar formula holds at x2 and xg-2 after taking into account the homogeneous Neumann

boundary conditions. Let H denote the finite difference differentiation matrix defined by

the above equations. We are interested in the eigenvalue spectrum of the operator H-1A

since this governs the rate of convergence of the preconditioned iterative method for solving

(41). The eigenvalues of H-1A are real and positive. The extreme eigenvalues of H-1A
are shown in Table 2. Again the smallest eigenvalue remains independent of the choice

of N while the largest eigenvalue grows very slowly with N. The entries in this table

demonstrate the effectiveness of H as a preconditioner for A. Haldenwang et al (1984)

showed theoretically that the eigenvalues of the corresponding preconditioned second-order

pseudospectral differentiation operator lie between 1 and (7r/2) 2. From this result one would

expect that the eigenvalues in the case of the fourth-order problem to lie between 1 and

(7r/2) 4. We can see from Table 2 that they do indeed lie between these bounds.

5 Analysis of the Multi-Domain Problem

Given a fixed integer M we consider a partition of (-1, 1) into M subintervals I._ where

In =

and the d,_ are M + 1 points in (-1,1) such that

-1 = do < d_ < ." < dM-1 <dM = 1.

Associated with each subinterval Ira, we define a set points x_ , 1 < j < N - 1, and weights

w_', 1 < j < N'i, w---j,j = 1, N-l, which correspond to a generalized Gaussian quadrature

rule of the form (13) defined on I,,. Let h?ix) ; 1 < j <_ N - 1, and h_(x), j = 1,N - 1, be

the corresponding interpolating functions which have compact support on the interval I,_.

We introduce the finite dimensional spaces

YN = {¢ • L2(-1,1) : ¢ I"'• P_(I'_)}'

where N is some integer and PN(A) denotes the set of all polynomials of degree less than or

equal to N over h. In order to discretize the space H02(-1, 1), let us introduce the spaces

XN = YNNH_(-1,1),

ZN-- {¢• L2(-1,1) : ¢ I'-.• PN(I,_)NHg(I,_)}.

The elements of XN are continuous and have continuous derivatives at the points d,_, 1 <

m < M - l, and vanish along with their first derivatives at x = 4-1.

10



In this paper we shall only considerthe caseA = 0 as far as domain decomposition is
concerned. This is the only value of A for which the weight function over (-1, 1) is the
sameas the weight function over eachof the subintervals Ira, 1 < rn _< M. Throughout

this section, in which A = 0, the zero subscript has been deleted. For example, a(.,.) is

used synonymously with a(., .)0 and the corresponding norm notation has also been altered
accordingly. We now define the discrete problem: Find uu E XN such that

a( uN, VN) ---- (f , _N)M, V V N E XN,

where the bilinear form (., .)M is defined by

(42)

where

M

(f,g)M = _ (f,g)m, (43)
ra=l

N-2

m m

(f,g)m ---- _ w_f(x_)g(x_) + Wl [(fg)(Xl ) "4-(fg)(X_v_l) ] + W, [(fg) (X 1 ) -- (fg) (XN_,)].! m ! rr*

j--2

Lemma 5.1 For any real number cr >_ 2 and for any ¢ E//o2(-1, 1) N H_(-1, 1) we have

I[ ¢ 2 CN2__
-- 71"N,0¢ 1[2 __ 1[ (_ Ila,

where lr 2 is the orthogonal projection operator from H02(-1 1) onto PN(--1,1)NH_(--1, I).N,O

Proof. See Bernardi and Maday (1991). []

Since H2(-1, 1) is contained in Cl(/-1, 1]) we can show that for any ¢ e H2(-1, 1), there

exists a cubic polynomial ¢o such that ¢ - ¢0 E//o2(-1, l) and for any real number s > 0,

I[ ¢o II,_< c I[ ¢ II_.

Now define an operator _r_v by _'_v¢ 2
= _'N,o(¢-- 5o) + 5o from H2(-1, 1) onto Pg(--1, 1). So

that if ¢ C H_(-1, 1) then by Lemma 4.1,

II¢ - _¢ fl_ = II(¢- ¢o)- _N,o(¢- ¢o) I1_
< CN_-_'II¢- ¢o 11-
< CN_-" II¢ lie.

We can easily verify that this operator satisfies

(_'_v¢)(4-1) = ¢(+1), (Tr_v¢)'(+l) = ¢'(:]=1).

Theorem 5.1 There exists an operator _r_ from Ho2(-1, l) onto XN satisfying

II¢- _¢ I1__<CN 2-" [I ¢ ]1_,,

for anufuncUon¢ Cg_(-1, 1)n gg(-1, 1) witho"_>2.
(44)

11



Proofi We recall that for a generalinterval (a, b) there exists a projection operator 7rN from

H_(a, b) onto PN(a, b) satisfying

IIw- CN IIw IIH'(o,b), (45)

rgw(a) = w(a), (TrNw)'(a) = w'(a), (46)

_rNw(b) = w(b), Qrnw)'(b) = w'(b), (47)

for all w E H_(a, b).
Let us define the projection operators rrN,,,,, for 1 < m < M, as being the projection

operators from H2(lm) onto PN(Im). We deduce that the element _b defined on each Im

by _v¢(x ) = rrN,._¢(x), V x E Ira,

is an element of PN(--1, l)f3 H02(-1, 1) that satisfies due to (48)

11¢- < cg2-_ II¢ .D (48)

Define JNf to be the Lagrange interpolating polynomial which interpolates the function

f at the N-3 interior collocation points of the generalized Gauss quadrature rule on (-1, 1).

Then Bernardi and Maday (1991) have shown that
2 3

Lemma 5.2 For any real number p > 1/2 and for any ¢ such that the function (1 -x )_¢ C

HP(-1, 1), the following inequality holds

II (1 - x2)}(f - JNf)II0<_ C N'/2-p II (1 - x2)}f II,. (49)

Lemma 5.3 For any real number p_ > 1/2 and for any f such that the function [(d,,_+_ -

x)(x-d._)]3/2f E HP"(Im), then

(f, VN)l" --(f, vN),,, < cg,/2-p" II [(din+,- x)(x-d,,_)]3/2f IIHP_(Zm),
sup

(50)

where (.,.)I,. is the L 2 inner product on I,,,.

Proof. The generalized Gauss quadrature rule on lm is exact for any polynomial in

P2N-3(I_) and so for any VN E PN(I,_)NH20(I_) we have

(f, VN)I,. -- (f, VN)_ .= if -- JNf, VN),m,

where JN is the Lagrange interpolation operator at the N - 3 interior nodes of a generalized
Gauss rule on the interval I.,. We recall that the mapping w _ w/[(dm+l - x)(x - d,,_)]2 is

continuous from H_(Im) into L2(I._). Then we can write

(f, VN)lm -- (f, VN)m <-- C 11[(d._+l - x)(x-dm)]3/2(f - dNf) IIL2(I,.)II VN IlU=(Zm) •

Finally using Lemma 4.2 we obtain

(f, vN)1,. --(I, vN)., <_ C N1/z-p" II [(dm+l - x)(x-d.,)]3/2f I[g.-.(1.,)]l VN [IH2(I.,), (51)

from which we deduce the result. []

12



Theorem 5.2 Let us suppose that the solution u to (32) belongs to H_(-1, 1), for a real

number a > 2 and that [(dm+l - x)(z - d,,,)]2f E HP"(Im) for a real number Pm> 1/2 for
each m = O, 1,..., M - 1. Then the following error estimate holds:

M-1

II U -- U N 112_ C(N 2-" IIu II= + _ N '�2-pro ]l [(d_+a - x)(x - dm)]3/2f IIHo-.(,..)).
m=0

(52)

Proof. Let us define u* = u - u ° and u_v = u_ - u_, where u ° and u ° are piecewise cubic

polynomials such that u* I1,,e H_(Im) and uTv I/.,,E PN(Im) N H_(Im), 0 < m < M - 1.

Then Proposition 2.1, together with (4) and (42), gives for any vg E ZN, -- --

IIuTv--"N I1_ --< C(a(u*N -- VN, U*N -- VN)

"= C(a(u*--VN, U*N--VN)--(f,U*N--VN)q-(f,u*N--VN)M), (53)

from which we obtain

IIu*- • I1_<c,/" inf IIu" (f, wN)- (S, WN)M !
Uu _ l ''_'' -- VNI1_+ _.,_z.SUp H_-,,7_ J • (54)

We choose VN = _r_u* and use Theorem 4.1 to show that

inf IIu*- 'ON i1__<CN 2-" II,.,"I1,,,o-> 2. (55)vNEZN

Since W N E ZN we have on each interval Im

(f, WN)Im --(f, WN)m = (f - JNf, WN)I,_.

We can also show that

sup (f ' wN) - (f ' WN)M M-1

w_,_z,, IIWN II_ -< _ sup
m=O WNEPN(Im)nHg(Im)

and therefore using Lemma 4.3 we may deduce that

(f, WN)I,_ --(f, WN)m

IIWNIIH_(_.,)

sup
w_EZN

Since

and

then

(f, WN)--(f, WN)M M-1

IIwNlI_ <_c F_,N'/_-"" II[(d_+,- x)(x - dm)13/2f IIH_,_,.,)•
m_O

IIu- U N i1__<11u* " I1_+ IIu°- uu - u%I1_

IIu° u_ I1_<c IIu* .*- - UNII_,

IIu- uN I1_<C II_'* *_ - UuI1_"

(56)

Finally using (54)-(56) we obtain the result. []

We now set up the collocation scheme for the domain decomposition problem. We define

UN E XN which interpolates data at the points x_ , 1 _< j _< N- 1, 1 _< m _< M by

N-1

m rt't ! r/_

UN(X ) u E Uj hj (x) + (ut)r_l (X) + (u )N_lhN_I(X) , Z e Ira, (57)
j=l
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where

u_=u_ +1, (u')_=(u')_ +_ ,l<m<M-1- (58)

Theorem 5.3 The variational problem (42) with the discrete inner product defined by (43)

is equivalent to the following collocation problem : Find uN E XN such that

u_(xT) = f(x'_), 2<_j<_N-2, 1 <m<_M, (59)

u_(x?+'+)- u_(x___-) = w?+_r(_?+'+) + w__lr(x_,_,--),
1 <re<M-l, (60)

,,._m+l., _ u,,,,_ _ _wT'+'r(x?+_+)- w?___r(_?___-)
ttNIX 1 "I-] Nk N-1--/ --

__-7/+lr,(x?+l+) -_ ,,., ,-- WN_I r [XN-1--}_

1 <re<M-l, (61)

and where r(x) = u_(x) - f(x).

Proof. Let us examine a(uN, VN) defined by (5). By linearity we may write the integral on

the right-hand side of (3) as the sum of integrals over each subinterval I,,, for 1 < m < M.

Subsequent integration-by-parts twice gives

--__ [ N NI_ N-I)]_a(uN, vN) ui_(x)vn(x)d x _ v--, ,, ,, v' "x" ' - (62)
m_=l_t[UN Nil, N-I) ruUt v ltxrn "C1

)Tt-_- ! ----"

where [fl(y) - f(y+) - f(y-) denotes the jump at x = y in f.
We choose as our basis for the space XN the polynomials h_'(x), 2 < j < N -2,

1 < m < M 1 and h__,(x), h"-___(x), 1 < m < M - 1. The use of these polynomials as

test functions in (42) with the discrete inner product given by (43) results in (59)-(61) which

completes the proof of the theorem. D

Remark 1 Note that in view of the ezpressions for the weights given in (27) and (28),

O(N ) -- -- O(N-') as N ---) oc ,-2 Wl = --WN "--
Wl "- WN --

and therefore from (60) and (61) we can write

u_(x_,+,+) " %,, , =O(N -2)- UNt N-l--)

Ustc/_m+l), Itt/xmNIJZl -1-1 -- UN( N-l--) = O(N-:) '

as N ----)oo. Thus we have second and third order continuity at the interface asymptotically,

as N--_ oo.
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6 The Biharmonic Problem in Two Dimensions

Consider the biharmonic problem

V4¢(x, y)= f(x,y),

¢(x, y)= gx(x,y),

-_(x, v) = g_(x,y),

in_2, (63)

on F, (64)

on F, (65)

where _ = (-1,1) × (-1, 1) and r is the boundary of _. Grisvard (1985) shows that

provided the boundary data satisfies certain compatibility conditions there exists Cb E H2(O)

satisfying (64) and (65). Since we are primarily concerned with the domain decomposition

problem we only consider the case when the weight function is unity. The analysis for the
single domain problem is thus greatly simplified.

In order to write down the variational formulation of the problem (63)-(65) we define the
bilinear form on H2(O) × H2(O):

a(¢, ¢) =/fn (V2¢)(V2¢)dxdy " (66)

The biharmonic problem (63)-(65) is then equivalent to the following variational problem:
Find ¢ E H2(_) such that (¢ - Cb) E H02(gt) and

a(¢,¢) = (f,¢), for all ¢ E Ho2(_), (67)

where

(f, ¢) =/fn f¢ dxdy.

We see that ¢ is a solution of the variational problem (67) if and only if ¢ = ¢ - Cb is a
solution of the problem: Find ¢ E H0_(_) such .that

a(¢, ¢) = (f, ¢) - a(¢ b, ¢), for all ¢ E Ho2(Ft). (68)

It can be easily verified that the bilinear form a(.,.) defined by (63) is continuous and

elliptic on Ho2(_) × H_(_) and hence that problem (71) has a unique solution in Ho:(_ ) for
f E H-2(n).

Let PN (fl) be the space of algebraic polynomials of degree at most N in each co-ordinate

direction. The collocation problem associated with (63)-(65) is:
Find CN E PN(n) M H2(fl) such that

V4¢N(X,y)- f(x,y),

CN(X,y)--" gX(x,y) ,

0¢N
o_ (x'Y)= g2(_,y),

02g'N Og2
onot (_,v) = --$((_,v) ,

(_,v) E R, (69)

(x,y) eSUT, (7O)

(x,y) E S UT, (71)

(x,y) E T, (72)
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whereO/On and O/Ot represent differentiation .normal and tangential to F, respectively, the

sets R, S and T are defined by

R = {(_i,_j): 2 < i,j < N-2},

S = {(_,+1),(+1,_,): 2 < i < N-2},

T = {(:1=1,+1)},

(2) _ _and GN-3(_/) = 0, 2 _< i < N 2. There are a total of (N + 1) 2 linear equations for the

(N + 1) 2 unknowns. The dimension of PN(fl) is (N + 1) 2. The basis functions in 20 are the

tensor product of the one-dimensional basis functions given by (10) and (11).

We define the two-dimensional discrete inner product in an analogous way to (34) by

applying the quadrature rule in each co-ordinate direction. So in the case when one of the

functions ¢ or ¢ belongs to Ho2(ll) we have

N-2 N-2

(¢,¢)N = _ _ wiwj¢(_i,_j)f(_,,_j). (73)
i=2 j=2

Next we define the discrete bilinear form aN(., .) by

aN(_, (_) -'- (V4¢, ¢)N •
(74)

Theorem 6.1 If there is a function ¢_, e PN(N)NH2(_2) satisfying the boundary conditions

(aT)-(as)then the collocation problem (69)-(72) is equivalent to the variational problem:

Find CN c: PN(fl) CI H2(fl) such that (¢N - _) E Hg(_2) and

aN(_)N,¢N) = (f,¢N)N , for all CN e PN(f_) N H2(f_) " (75)

Proof. On each horizontal or vertical side of f_, _bN and _b_v are polynomials of degree

N satisfying N + 1 conditions and so are identical on F. The same argument applies to

their normal derivatives and so (¢N -- ¢_) E PN(f_) N If wenowchoose CN(X,y)=
hj(x)hk(y), 2 < j,k < N- 2, then (75) implies (69)-(72). Conversely, since these (N - 3) 2

polynomials form a basis for PN f3 Hg(_), (69)-(72) implies (75). I:3

Let us now turn our attention to the problem of domain decomposition, and for simplicity

restrict ourselves for the moment to the case when f_ is divided into two subdomains with

interface
3'= {(0, y): --I _<y_< 1}.

We define
f_,= {(x,y):-l<z<0, -1<y51},

fl_={(x,y):0___x<-l, -1 <_y<__l},

and Fk is the boundary of f_k for k = 1,2. Define the subspace V of H2(f_l) × H2(f12) by

G9_) 1 lO_) 2

Y -" {kI/ = (¢1,¢2) E H2(_'_1) x H2(__2) : _)1 ___ _32, (.._._ = (_- on _[} ,
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and the subspaceVo of V by

0¢'-vo= {¢=(¢',C)_v : ¢'=
On

We consider the bilinear form defined on V × V by

-0onFform= 1,2}.

a(_, _) = a,(¢',¢') + a2(¢ 2,¢2), (76)

where

ak(C, Ok)= f_ (V%k)(v2Ck)dxdy,
k

We can show, using Green's theorem, that if • C Vo then tim above bilinear form may
be written as

a(qJ, _))= /jfn (V4¢')¢' dxdy +/_n2(V,¢2)¢2dxdy

02 _,_2,0¢' , 03 ,
_x-Sx3(¢ - • (77)

If there exists _b E V satisfying (64)-(65) then the variational problem is: Find _ E V such
that q_ - qjb E Vo and

where fk is the restriction of f to fb,.

The variational problem (78) is equivalent to the following interface problem:

V4¢k=fk, inFtk, k=l,2, (79)

Ck=g,, onFflFk, k=l,2, (80)

0¢ k
On-g2, onPNFk, k=l,2, (81)

¢,=¢2, 0¢' 0¢ 2
0--7= o---/' on ,_. (82)

Define the finite dimensional space VN by

vu = {¢ = (¢', ¢2) _ p,,(n,) n H2(n,) × PN(n_)n H_(_2):

¢' = C 0¢' 0¢ 2
' Ox - Ox on 7},

and the subspace VN, o of VN by

VN,O= {_ = (¢,,¢2) _ VN : ¢_ 0¢_
= 0---n-=0°nFf°rm=l'2}"

In the case when one of qJ or q) belong to VN,o we define a discrete inner product by

(¢, ¢)N = (¢', ¢')_ + (C, ¢2)_,
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where
N-2 N-2

wkw k k k k

i=2 j=2

N-2

+ _: w__,wsek(o,6)¢(°,6)
j=2

N- 2 _.M¢- 0 k k

+(-1) _+' _ wN-,_s[_(¢ ¢ )](o,_,),
j=2

for k = 1,2, where O/On is the normal derivative to _k. The discrete bilinear form on

VN × VN is defined by
aN(* , (I)) = a_q(¢ 1, ¢1) + a_(_32, ¢2),

where

a_(* _,¢) = (V'¢ _,¢_)_

N-2 02¢k _,0@(0,+ Z: _j[-_-_ (o, s)-b-_-__s)
j=2

03¢k
0n_ (°' _s)¢_(°'_)] '

for k = 1,2.

Theorem 6.2 If there is an element _JbN E VN satisfying (80) and (81) then the variational

problem: Find 0IN E VN such that (_IN -- _llbN) E VN,o and

aN(_N, ON) = (fl, ¢1)_ + (f2, ¢2)2 , (83)

for all • = (¢1, ¢2) E VN,O, is equivalent to the collocation problem: Find 0IN E VN such that

V'_b_(x,y) = fk(x,y),

¢_(_,v) =g,(x,y),

o¢_,(_,y) = g_(x,y),
On

OnOt

(x,y) E Rk, k-- 1,2, (84)

(z,y) eSkuTk, k=1,2, (85)

(x,y) ESkOTk, k=l,2, (86)

(x,y) E Tk, k = 1,2, (87)

03 2 W1 r(v4-/._ -- f)(0,_j)]
_X3(¢N-- ¢_q)(0,_j) -- -- N-1ik WN

-w_2[(V4¢_v - f)(0, _j)]

2<j<_N-2, (88)

02 2 w* r(V4"_'_- f)(0,_s)]

-4-w_[(V4_v- f)(O,_j)], 2<j<_N-2, (89)
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wheT'e

R_ = {((/k,(j): 2 N i,j <_ N- 2},k = 1,2,

5'1 = {((_,+1),(-1,_¢i): 2 < i < N- 2},

5'2 = {(_,:lzl),(1,_,): 2 < i < N- 2),

T1 = {(-1,+1),(0,+1)),

T2 = {(0,:[:1),(1,+1)},

and

_¢_ =(_i-I)/2, sci_=(1+_i)/2, 2<i<N-2.

Proof. We can show (qlN--_bU) C VN, o as in the proof of Theorem 5.1. If we now choose
as our test functions the following:

I ¢](x,y)=hok(Zx2+xl)ht(y), ¢2(x,y )=0, 2<k,l<_U-2,¢l(x,Y)= , ¢ (,y)=hj,(Zx-1)h,(y), 2_<k,l<N-2, (90)
¢l(x,y) = hg_l(2x + 1)hi(y), ¢2(x,y)= h](2x- 1)ht(y), 2 < l < g- 2,

Ca(x,y) = hN_,(2x + 1)ht(y), ¢2(x,y) = hl(2x 1)hi(y), 2 < l < N- 2,

then we obtain immediately (84), (85), (88) and (89). Conversely, since these 2(N- 3)(N- 2)
test functions constitute a basis for Vg,o, (84)-(89) implies (83).

7 Numerical Results

The quadrature rule (8) is used to compute approximations to the integrals

(a)
(b) f_l 1 w)_(x)xeXdx,

when A = 0 and A = -1/2. The errors in the quadrature rule are given in Tables 3 and 4 for

integrals (a) and (b), respectively, for different" values of N. The quadrature rule evaluates
the integrals accurate to machine precision for a value of N as small as 17.

7.1 1-D Problems

Numerical solutions to the fourth-order model problem (1) are obtained when the exact
solution is given by

(a) u(x)= (1-
(b) 1+

In example (a) the boundary conditions are homogeneous whereas for (b) we have inho-

mogeneous boundary conditions. The differential equation is collocated at the generalized

Legendre and Chebyshev nodes given by the zeros of (1 - x2)P_c__(x) and (1 - x2)Tf___(x),
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respectively. The error in the numerical solution is measuredusing weighted norms based
on the correspondinggeneralizedquadrature rule. The infinity norm is also given to show
the maximum pointwiseerror at the collocation points. Thesearedisplayedin Tables5 and
6 for examples(a) and (b), respectively,wherewedefine

N-I )22II = wjej+ - (e_,r_l)2))] I/2,

j=l

II  Iloo= max
I<j<N-1

and

ej = u(xj)- UN(Xj), j = 1,2,...,N- 1 ,

where the points x j, 1 < j <_ N - 1, are the generalized nodes. The usual exponential con-

vergence of spectral approximations to smooth solutions of differential equations is observed

with accuracy to machine precision being obtained when N -- 24.

Next we apply these techniques in the case of domain decomposition. For simplicity we

consider a partition of the interval [-1, 1] into the two subintervals [-1,0] and [0, l] with

common point x = 0. We solve again the model problems (a) and (b) using the collocation

scheme (59)-(61). The corresponding error norms are shown in Tables 7 and 8, respec-

tively. The mono-domain and two-domain spectral approximations converge exponentially

as expected. The two-domain approximation converges slower than the mono-domain ap-

proximation for the same total number of colloc_ttion points since for the problems considered
here there is no particular advantage to be gained in using the former since the solutions

are smooth and the problem is one-dimensional. Patera (1984) observes similar behaviour

for spectral element approximations to second-order problems. The power and usefulness
of a multi-domain approach for pseudospectral methods will be demonstrated for problems

defined in nonrectangular geometries in 2-D.

7.2 2-D Problems

Numerical solutions to the biharmonic equation are obtained using the pseudospectral method

when the exact solution is given by

(a) ¢(x,y) - (1 - x2)2(1 - y2)2sin(TrY),

(b) ¢(x,y)= (1 - x2)2(1 -Y2)2sin(Trx)sin(_rY) ,

(c) ¢(x,y)= sin(2 x)sin(2 y).

In examples (a) and (b) the boundary conditions are homogeneous whereas for (c) the

Neumann boundary condition is inhomogeneous. The mixed second order derivative _b_y

is zero at the four corners of _ for these three model problems. The biharmonic equation

is collocated at the Cartesian product of generalized Legendre nodes. The weighted and

infinity norms of the errors are shown in Table 9 for problems (b) and (c). We see that a

numerical solution correct to machine accuracy is obtained on a grid as coarse as 21 x 21.
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In the caseof domain decompositionweconsidera partition of _ into two rectangular
subdomains[-l,0] × [-1,1] and [0,1] × [-1,1] with commoninterface x = 0. Here we solve

the model problem (a) using the collocation scheme (84)-(89). Both the mono-domain and

two-domain pseudospectral approximations converge exponentially as expected. Again the

two-domain approximation converges slower than the mono-domain approximation for the

same total number of collocation points. This phenomenon was observed for 1-D problems

too. In Figure 1 we give the contours of the approximation to the solution of problem (a)
obtained using domain decomposition with N = 20. This figure is included to show the
smoothness of the contours across the interface x = 0.

7.3 2-D Problems in Nonreetangular Domains

We extend the ideas developed in this paper to the solution of the Stokes problem for the

flow through an L-shaped channel. The flow geometry in this example is nonrectangular

for which a standard single domain pseudospectral approximation is not applicable. The

ability of pseudospectral methods to solve problems in this kind of geometry justifies the

development of the theory of the multi-domain formulation considered earlier. The flow

domain is divided into three rectangular subdomains as shown in Fig. 2. The stream

function within each subdomain is approximated by a pseudospectral representation which

interpolates values of the stream function at interior collocation points and values of the

stream function and its normal derivative on the boundaries and subdomain interfaces. These

representations are G'1 continuous across the subdomain interfaces. The unknowns in the

pseudospectral approximations are determined from the collocation scheme derived from

the discrete variational formulation. This scheme results in C 3 continuous approximations
asymptotically.

If approximations of degree N are used in each direction in each subdomain then the

collocation equations yield a system of (3N - 5)(N- 3) equations for the (3N- 5)(N- 3)
unknowns. A total of 2(N - 3) of these unknowns represent the values of the normal deriva-

tives of _b at the interior nodes along the interfaces between subdomains f_l and ft2 and

between subdomains Ft2 and f_3. The remaining unknown values are the nodal values of _b

at the interior and interface points of subregions f_l, f_2 and f_3- The collocation equations

give rise to a linear algebraic system Au = b. The vector u contains the nodal values of _b

and also the normal derivative of _b at the interface nodes. The block tridiagonal structure

of the matrix A for the L-shaped domain is shown in Fig. 3. This system is solved using a
Crout factorization subroutine from the NAG Library (1988). A more efficient direct solution

technique which takes account of the inherent matrix structure is the almost block diagonal

solver of Brankin and Gladwell (1990) which has been used in spectral calculations by Kara-

georghis and Phillips (1990,1991). However, this subroutine has not yet been incorporated
into the present algorithm.

The entry and exit lengths, a and b respectively, are chosen to be long enough to obtain
fully developed flow. In Figs. 4 and 5 we show the contours of the stream function for

N = 14, b = 7, c = 1 with a = -3 and a = -5, respectively. A small weak vortex is

observed in the salient corner. Fully developed flow is reached within a channel width of the
reentrant corner.
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8 Conclusions

Pseudospectral approximations to the solution of fourth-order elliptic partial differential

equations are constructed using a collocation procedure based on the nodes of generalized

Gaussian quadrature rules. Analytic expressions for the weights appearing in these quadra-

ture rules are derived and their forms for the generalized Legendre and Chebyshev rules are

given. The equivalence between a discrete variational form of the differential problem with

suitably defined inner products and a collocation scheme is demonstrated when the collo-

cation points are chosen to be the zeros of certain ultraspherical polynomials. The natural
choice of collocation points for fourth-order problems differs from the choice for second-

order problems, viz. the Gauss-Lobatto points. The usual convergence properties of spectral

approximations are observed.
A domain decomposition procedure based on the generalized Gauss-Legendre nodes is

considered. Pseudospectral approximations which are automatically C 1- continuous at the

subinterval interfaces are used to represent the solution. An examination of the correspond-

ing discrete variational problem results in an equivalent collocation method. The resulting

approximation is shown to be C 3- continuous at the interfaces asymptotically, i.e. as the

order of the approximations is increased in each subinterval. The scheme is analyzed and an

error estimate is derived for the domain decomposed problem.

For fourth-order problems in two dimensions we propose using a tensor product of the

one-dimensional basis functions to represent the solution. The equivalence between the collo-

cation method defined by collocating the differential equation on a grid formed by the tensor

product of the one-dimensional collocation points and a discrete variational formulation of

the problem is described as well as the corresponding domain decomposition problem. It

is intended to apply this collocation method to the solution of the Navier-Stokes equations

in rectangularly decomposable domains using a stream function formulation even though a

simple variational principle does not exist for these equations.

An application of this methodology to a biharmonic problem in a nonrectangular geom-

etry is described. A single domain approach is.not feasible for this class of problems unless

one first transformed the original irregular domain to a simpler rectangular one. However,

this would be cumbersome if it could be done at all since a transformation would need to be

found for each new geometry.
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N

8

12

16

20

24

28

32

TABLE 1

Extreme eigenvalues

/_min

0.3128+2

0.3128+2

0.3128+2

0.3128+2

0.3128+2

0.3128+2

0.3128+2

_mfl_r

0.4768+4

0.1091+6

0.1111+7

0.6788+7

O.2979+8

0.1039+9

0.3065+9

0.2842-3

0.2537-3

0.2587-3

0.2652-3

0.27O6-3

0.2750-3

0.2788-3

Extreme

N

8

12

16

2O

24

28

32

TABLE 2

eigenvalues of H -1A

_min '_max

1.000 3.312

1.000 4.180

1.000. 4.635

1.000 4.915

1.000 5.104

1.000 5.241

1.000 5.344

TABLE 3

Quadrature error in the approximation of fl 1 w(x)e_cos(Trx)dx
for different weight functions

N w(x) = 1 w(x) = (1 - _2)-1/2
5 0.497 -2 0.689 -2

?7 0.767-10 0.122-8
0.300 -15 0.710 -14

J

TABLE 4

Quadrature error in the approximation of fl 1 w(x)xeXdx
for different weight functions

N w(x) = 1

5 0.579 -5

7 0.800-140.3O0 -15

W(X) = (1 -- X2) -1/2

0.843 -5

0.640 -14

0.360 -14
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TABLE 5

Errors in the numerical solution of the model problem (1)

with exact solution given by u(x) = (1 - x2)2sin(_rx)

-- )_=0

g II_ 112,_
_8 1.387-2

12 2.941-6

16 3.077-10

24 1.177-13

A=0

II_ tloo
1.515-2

2.954-6

3.041-10

1.329-13

= -1/2

3.041-2

2.057-5

6.355-9

1.804-13

A = --1/2

3.200-2

2.783-5

7.289-9

2.018-13

TABLE 6

Errors in the numerical solution of the fourth-order problem

with u(=i=l)= 1, du/dx(+l) = 2r

and exact solution u(x) = 1 + sin(2rx)

- / _=0
Ns II_ 112,_0.236

12 1.883-4

16 t 1.181-724 5.795-13

A=0

0.266

1.845-4

1.150-7

6.701-7

)_ = -1/2

0.450

5.926-4

8.848-7

4.534-13

A = -1/2--

0.494

7.976-4

1.052-6

5.190-13

TABLE 7

Errors in the numerical solution of the model problem (1) with exact solution given by

u(x) = (1 - x2)2sin(r x) using domain decomposition

_=0

g II_ 112,_

2.633-2

8 1.490-3

12 3.494-7

16 1.293-11

_=0

2.024-2

1.096-3

2.642-7

1.243-11

= - 1/2---_

3.294-2

1.890-3

4.075-7

1.254-11

_=-1/2 i
II_li= .
2.747-2

1.377-3

3.073-7

9.523-11
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TABLE 8

Errors in the numericalsolution of the fourth-order problem

with u(:J:l)= 1, du/dx(:l:l) = 2_r and exact solution u(x)= 1 + sin(2_rx) using domain
decomposition

N

6 0.326

8 2.794-2

12 3.221-5

16 7.491-9

= 0 _=0 _ =-1/2 _ =-1/2

0.230

2.080-2

2.430-5

5.677-9

0.476

3.580-2

3.757-5

7.961-9

0.331

2.632-2

2.839-5

6.058-9

TABLE 9

Errors in the numerical solution of the biharmonic problem (63)-(65)

with exact solutions given by (b) and (c)

Problem (b)

N Jl_ I1_,_
6 0.347

8 5.145-3

12 4.667-6

16 5.631-10

20 2.935-13

II_ IJoo
0.512

3.779-2

9.413-5

7.836-9

4.291-12

Problem (c)

1.467

5.831-2

1.879-4

3.856-8

9.648-11

2.483

8.238-2

4.925-4

7.437-8

1.502-10
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Figure I. Contour plots of _(x, y) for problem (a) when N =20, using domain

decomposition and the generalized Legendre pseudospectral method.
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Figure 2. The L-shaped domain and boundary conditions.
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Figure 3. Structure of the matrix A for the domain decomposition problem in 2-D.
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Fig.re 4. Contours of ¢_(x, y) for a = -3, b = 7, c = 1 and N = 16.
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D.6000¢

Figure 5. Contours of _b(z, y) for a = -5, b -- 7, e = 1
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A Properties of Ultraspherical Polynomials

The ultraspherical or Gegenbauer Polynomials are the solutions of the differential equation

[w_+,(x)a_)'(x)]' + n(n+ 2A+ 1)w_(x)a_)(_)= 0, (1)
that are hounded at x = 4- 1, where

wx(z)=(1-z2) A, A>-I.

They are orthogonal with respect to w,_(x) over the interval [-1,1]

f_' _(_)a_)(x)a_._)(_)d_= _,.
1

where

2"_+'[r(m + A + 1)]2

7,. = (2m + 2A + 1)m!r(m + 2A + 1) '

and r is the gamma function. At z = 4-1 , G_:q(z) satisfies the condition

(2)

(3)

(4)

a(,_)(±l) = (+l).r(n + A+ 1)
,!r(1 + 1) " (5)

The ultraspherical polynomials may be generated using the recurrence relation

(n + 1)(n + 2A + 1)G_,

= (2n + 21 + l)(n + 1 + l)xG_ _) - (n + A)(n + A + l)C(._1, (6)

C(o_)(x) = 1 , G_)(x) = (1 + l)x.

The leading coefficient, A., of G_:O(x) is given by

1 r(2n + 2A + 1)
An =

2-.!r(. + 21+ 1)" (7)

We have the following integrals involving ultra£pherical polynomials (Erdelyi (1954), p.284)

f' (1- z)'(1 + x).C_)(_)d_=
1

/1,(1 - x)#(1 + x)_C(.A)(x)dx =

where A,(7 > -1.

2_+*+"r(a + 1)r(A + n + 1)r(_ - I + 1)

,,!r(_ - t - _ + 1)r(I + _ + _ + 2)

2_+'+*r(a+ 1)r(A+n+ 1)r(t - _ +,,)
n!r(1 - _)r(A+ _ +. + 2)

The ultraspherical polynomials satisfy the recursion relation

(8)

(9)

(1 - x2)C(Ak(x) -- --nxC(A)(x) A- (n + A)C(_, (x). (10)
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